Partial Retraining: A New Approach to Input Relevance Determination
نویسندگان
چکیده
In this article we introduce partial retraining, an algorithm to determine the relevance of the input variables of a trained neural network. We place this algorithm in the context of other approaches to relevance determination. Numerical experiments on both artificial and real-world problems show that partial retraining outperforms its competitors, which include methods based on constant substitution, analysis of weight magnitudes, and "optimal brain surgeon".
منابع مشابه
A New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks
The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...
متن کاملTechnology Acceptance Model (TAM) As a Predictor Model for Explaining Agricultural Experts Behavior in Acceptance of ICT
This study aimed to develop TAM model to explain adoption of information technologies process .Descriptive – correlation study was conducted and data were collected through a survey. Statistical population was West Azerbaijan Agricultural extension agents who 120 of them were selected randomly using the krejcie and Morgan table. A questionnaire was employed to measure the variables in the model...
متن کاملTUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملthod for Giorgio Satta and Oliviero Stock
Island-driven parsing is of grea.t relevance for speech recognition/understanding and other na.tural language processing applications. A bidirectional algorithm is presented that efficiently solves this problem, allowing both any possible determination of the starting words in the input sentence and flexible control. In pazticular, a mixed bottom-to-top and top-down approach is followed, withou...
متن کاملA NEW APPROACH FOR EVALUATION OF SEISMIC SLOPE PERFORMANCE
The evaluation of seismic slope performance during earthquakes is important, because the failure of slope (such as an earth dam, natural slope, or constructed earth embankment) can result in significant financial losses and human. It is important, therefore, to be able to forecast such displacements induced by earthquake. However, the traditional forecasting methods, such as empirical formulae,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of neural systems
دوره 9 1 شماره
صفحات -
تاریخ انتشار 1999